Mero, J. L. in The Mineral Resources of the Sea Vol. 1 (ed Mero, J. L.) 103–241 (Elsevier, 1965).
Boschen, R. E., Rowden, A. A., Clark, M. R. & Gardner, J. P. A. Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast. Manag. 84, 54–67 (2013).
Hein, Conrad, J. R., Tracey, A. & & Dunham, R. E. Seamount characteristics and mine-site model applied to exploration- and mining-lease-block selection for cobalt-rich ferromanganese crusts. Mar. Georesour. Geotechnol. 27, 160–176 (2009).
Hein, J. R., Koschinsky, A. & Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 1, 158–169 (2020).
Hecker, B. & Paul, A. Z. Benthic Baseline Survey of the DOMES Area (NOAA, 1977).
Wilson, G. D. F. Macrofauna abundance, species diversity and turnover at three sites in the Clipperton–Clarion fracture zone. Mar. Biodivers. 47, 323–347 (2017).
Washburn, T. W. et al. Patterns of macrofaunal biodiversity across the Clarion-Clipperton zone: an area targeted for seabed mining. Front. Mar. Sci. 8, 626571 (2021).
Chuar, C. H., Tong, S. J. W., Chim, C. K., Wong, H. P. S. & Tan, K. S. Abyssal macrofaunal community structure in the polymetallic nodule exploration area at the easternmost region of the Clarion-Clipperton fracture zone, Pacific Ocean. Deep Sea Res. I 161, 103284 (2020).
Yu, O. H. et al. Characterization of deep-sea macrofauna in the Korean exploration claim area in the Clarion-Clipperton fracture zone, Northeastern Pacific Ocean. Ocean Sci. J. 53, 301–314 (2018).
Stewart, E. C. D. et al. Biodiversity, biogeography, and connectivity of polychaetes in the world’s largest marine minerals exploration frontier. Divers. Distrib. 29, 727–747 (2023).
Rabone, M. et al. How many metazoan species live in the world’s largest mineral exploration region?. Curr. Biol. 33, 2383–2396 (2023).
Rex, M. A. & Etter, R. J. Deep-Sea Biodiversity: Pattern and Scale (Harvard Univ. Press, 2010).
Glover, A. G. et al. Polychaete species diversity in the central Pacific abyss: local and regional patterns, and relationships with productivity. Mar. Ecol. Prog. Ser. 240, 157–170 (2002).
McClain, C. R., Nekola, J. C., Kuhnz, L. & Barry, J. P. Local-scale faunal turnover on the deep Pacific seafloor. Mar. Ecol. Prog. Ser. 422, 193–200 (2011).
Ingels, J. & Vanreusel, A. The importance of different spatial scales in determining structural and functional characteristics of deep-sea infauna communities. Biogeosciences 10, 4547–4563 (2013).
Kaiser, S. et al. Effects of environmental and climatic drivers on abyssal macrobenthic infaunal communities from the NE Pacific nodule province. Mar. Biodivers. 54, 35 (2024).
Hartman, S. E. et al. Enduring science: three decades of observing the Northeast Atlantic from the Porcupine Abyssal Plain Sustained Observatory (PAP-SO). Prog. Oceanogr. 191, 102508 (2021).
Horton, T. et al. Are abyssal scavenging amphipod assemblages linked to climate cycles?. Prog. Oceanogr. 184, 102318 (2020).
Glover, A. G. et al. The environmental impacts of deep-sea mining. Curr. Biol. (in the press).
Thiel, H. et al. The large-scale environmental impact experiment DISCOL—reflection and foresight. Deep Sea Res. II 48, 3869–3882 (2001).
Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 12, e0171750 (2017).
Jones, D. O. B. et al. Long-term impact and biological recovery in a deep-sea mining track. Nature 642, 112–118 (2025).
Lefaible, N. et al. Industrial mining trial for polymetallic nodules in the Clarion–Clipperton zone indicates complex and variable disturbances of meiofaunal communities. Front. Mar. Sci. 11, 1380530 (2024).
Fukushima, T. & Imajima, M. A study of a macrobenthos community in a deep sea resedimentation area. In Proc. International Symposium on Environmental Studies for Deep-Sea Mining 331–335 (MMAJ, 1997).
Trueblood, D. D., Ozturgut, E., Pilipchuk, M. & Gloumov, I. F. The ecological impacts of the Joint U.S.–Russian benthic impact experiment. In Proc. Second Ocean Mining Symposium 139–145 (ISOPE, 1997).
Ingole, B. S., Ansari, Z. A., Rathod, V. & Rodrigues, N. Response of deep-sea macrobenthos to a small-scale environmental disturbance. Deep Sea Res. II 48, 3401–3410 (2001).
Borowski, C. Physically disturbed deep-sea macrofauna in the Peru Basin, southeast Pacific, revisited 7 years after the experimental impact. Deep Sea Res. II 48, 3809–3839 (2001).
Underwood, A. J. The mechanics of spatially replicated sampling programmes to detect environmental impacts in a variable world. Aust. J. Ecol. 18, 99–116 (1993).
Underwood, A. J. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecol. Appl. 4, 3–15 (1994).
Warwick, R. M. & Clarke, K. R. Increased variability as a symptom of stress in marine communities. J. Exp. Mar. Biol. Ecol. 172, 215–226 (1993).
McVeigh, K. Canadian company in negotiations with Trump to mine seabed. The Guardian (28 March 2025).
Borowski, C. & Thiel, H. Deep-sea macrofaunal impacts of a large-scale physical disturbance experiment in the Southeast Pacific. Deep Sea Res. II 45, 55–81 (1998).
Murray, C. et al. Effects of experimental in situ seabed disturbance on deep-sea macrofaunal communities of Chatham Rise, Southwest Pacific. NZ J. Mar. Freshw. Res. 59, 1496–1529 (2025).
van der Grient, J. M. A. & Drazen, J. C. Evaluating deep-sea communities’ susceptibility to mining plumes using shallow-water data. Sci. Total Environ. 852, 158162 (2022).
Simon-Lledó, E. et al. Biological effects 26 years after simulated deep-sea mining. Sci. Rep. 9, 8040 (2019).
Bigham, K. T., Rowden, A. A., Leduc, D. & Bowden, D. A. Review and syntheses: impacts of turbidity flows on deep-sea benthic communities. Biogeosciences 18, 1893–1908 (2021).
Bigot, L. et al. Assessment of the ecological quality status of soft-bottoms in Reunion Island (tropical Southwest Indian Ocean) using AZTI marine biotic indices. Mar. Pollut. Bull. 56, 704–722 (2008).
Stark, J. S., Kim, S. L. & Oliver, J. S. Anthropogenic disturbance and biodiversity of marine benthic communities in Antarctica: a regional comparison. PLoS ONE 9, e98802 (2014).
Ruhl, H. A. & Smith, K. L. Shifts in deep-sea community structure linked to climate and food supply. Science 305, 513–515 (2004).
Drazen, J. C., Baldwin, R. J. & Smith, K. L. Sediment community response to a temporally varying food supply at an abyssal station in the NE Pacific. Deep Sea Res. II 45, 893–913 (1998).
Ruhl, H. A., Ellena, J. A. & Smith, K. L. Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proc. Natl Acad. Sci. USA 105, 17006–17011 (2008).
Glover, A. G. et al. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. Adv. Mar. Biol. 58, 1–95 (2010).
Levin, L. A. et al. Defining “serious harm” to the marine environment in the context of deep-seabed mining. Mar. Policy 74, 245–259 (2016).
Magurran, A. E. Measuring Biological Diversity (Wiley-Blackwell, 2004).
McClain, C. R. & Schlacher, T. A. On some hypotheses of diversity of animal life at great depths on the sea floor. Mar. Ecol. 36, 849–872 (2015).
Thrush, S. F. & Dayton, P. K. Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. Annu. Rev. Ecol. Evol. Syst. 33, 449–473 (2002).
Simon-Lledó, E. et al. Megafaunal variation in the abyssal landscape of the Clarion Clipperton zone. Prog. Oceanogr. 170, 119–133 (2019).
Dumbrell, A. J. et al. Changes in species diversity following habitat disturbance are dependent on spatial scale: theoretical and empirical evidence. J. Appl. Ecol. 45, 1531–1539 (2008).
Fleming, B. F. M., Simon-Lledó, E., Benoist, N., O’Malley, B. & Jones, D. O. B. Influence of seabed heterogeneity on benthic megafaunal community patterns in abyssal nodule fields. Elementa 13, 00049 (2025).
Clark, M. R., Durden, J. M. & Christiansen, S. Environmental impact assessments for deep-sea mining: can we improve their future effectiveness? Mar. Policy https://doi.org/10.1016/j.marpol.2018.11.026 (2020).
Etter, R. J. General sampling design for baseline studies. in Standardization of Environmental data and information—Development Guidelines 427–447 (International Seabed Authority, 2002).
Fraterrigo, J. M. & Rusak, J. A. Disturbance-driven changes in the variability of ecological patterns and processes. Ecol. Lett. 11, 756–770 (2008).
Amon, D. J. et al. Assessment of scientific gaps related to the effective environmental management of deep-seabed mining. Mar. Policy 138, 105006 (2022).
Madureira, P., Brekke, H., Cherkashov, G. & Rovere, M. Exploration of polymetallic nodules in the area: reporting practices, data management and transparency. Mar. Policy 70, 101–107 (2016).
Gallucci, F., Moens, T., Vanreusel, A. & Fonseca, G. Active colonisation of disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model. Mar. Ecol. Prog. Ser. 367, 173–183 (2008).
Glover, A. G., Wiklund, H., Chen, C. & Dahlgren, T. G. Managing a sustainable deep-sea ‘blue economy’ requires knowledge of what actually lives there. Elife 7, e41319 (2018).
Standardization of Environmental Data and Information—Development of Guidelines (International Seabed Authority, 2002).
TMC Subsidiary NORI shares preliminary findings on environmental impacts of pilot nodule collection system test. TMC https://investors.metals.co/news-releases/news-release-details/tmc-subsidiary-nori-shares-preliminary-findings-environmental/ (14 December 2023).
Glover, A. G., Dahlgren, T. G., Wiklund, H., Mohrbeck, I. & Smith, C. R. An end-to-end DNA taxonomy methodology for benthic biodiversity survey in the Clarion–Clipperton zone, Central Pacific Abyss. J. Mar. Sci. Eng. 4, 2 (2016).
Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).
World Register of Marine Species (WoRMS, 2025).
Wiklund, H. et al. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion–Clipperton zone, central Pacific Ocean: Mollusca. ZooKeys https://doi.org/10.3897/zookeys.707.13042 (2017).
Wiklund, H. et al. Checklist of newly-vouchered annelid taxa from the Clarion–Clipperton zone, central Pacific Ocean, based on morphology and genetic delimitation. Biodivers. Data J. 11, e86921 (2023).
Stewart, E. C. D., Bribiesca-Contreras, G., Weston, J. N. J., Glover, A. G. & Horton, T. Biogeography and phylogeny of the scavenging amphipod genus Valettietta (Amphipoda: Alicelloidea), with descriptions of two new species from the abyssal Pacific Ocean. Zool. J. Linn. Soc. 201, zlae102 (2024).
Dahlgren, T. G. et al. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion–Clipperton zone, central Pacific Ocean: Cnidaria. Biodivers. Data J. 4, e9277 (2016).
Bribiesca-Contreras, G. et al. Benthic megafauna of the western Clarion–Clipperton zone, Pacific Ocean. ZooKeys 1113, 1–110 (2022).
Neal, L. et al. Taxonomy, phylogeny, and biodiversity of Lumbrineridae (Annelida, Polychaeta) from the Central Pacific Clarion–Clipperton zone. ZooKeys 1172, 61–100 (2023).
Drennan, R. et al. On Anguillosyllis cf. hessleri Maciolek, 2020—a species complex from the Clarion–Clipperton zone, abyssal central Pacific. Deep Sea Res. I 220, 104453 (2025).
Bonifácio, P., Martínez Arbizu, P. & Menot, L. Alpha and beta diversity patterns of polychaete assemblages across the nodule province of the eastern Clarion–Clipperton fracture zone (equatorial Pacific). Biogeosciences 17, 865–886 (2020).
Oksanen, J. et al. vegan: Community ecology package. R version 2.6-10 (2025).
Chao, A., Ma, K. H., Hseih, T. C. & Chiu, C. H. SpadeR: psecies-richness prediction and diversity estimation in R. R version 0.1.1 (2015).
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Kindt, R. BiodiversityR: package for community ecology and suitability analysis. R version 2.17–1.1 (2025).
De Cáceres, M., Jansen, F., Endicott, S. & Dell, N. Package ‘indicspecies’: Relationship between species and groups of sites. R version 1.8.0 (2025).
Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R version 0.7.2 (2023).
Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43 (1990).
Beninger, P. G., Boldina, I. & Katsanevakis, S. Strengthening statistical usage in marine ecology. J. Exp. Mar. Biol. Ecol. 426–427, 97–108 (2012).
Underwood, A. J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge Univ. Press, 1997).
McClain, C. R. The commonness of rarity in a deep-sea taxon. Oikos 130, 863–878 (2021).
Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
Chiu, C.-H., Wang, Y.-T., Walther, B. A. & Chao, A. An improved nonparametric lower bound of species richness via a modified Good–Turing frequency formula. Biometrics 70, 671–682 (2014).
Burnham, K. P. & Overton, W. S. Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927–936 (1979).
Clarke, K. R. Comparisons of dominance curves. J. Exp. Mar. Biol. Ecol. 138, 143–157 (1990).
Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online https://doi.org/10.1002/9781118445112.stat07841 (2017).
Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R version 0.4 (2020).
Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
Dufrêne, M. & Legendre, P. Species assemblages and indicator species:the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).

Leave a Reply